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1. 

Due to the efforts of Bert and associates, the method of differential quadrature
is already well established in the technical and scientific literature [1–3]. Recently
[4], the DQ technique was employed in the analysis of transverse vibrations of a
thin rectangular plate subjected to a non-uniform stress field due to the presence
of distributed loading of the type

f(y)=S01−
y2

b21 (1)

applied to plate edges parallel to the y-axis. The components of the plane stress
tensor are approximately known [5], and the governing vibrations partial
differential equation was solved by means of the DQ method for several
combinations of plate boundary conditions.

The present study deals with a numerical investigation of the relative
accuracy of the DQ method by comparing the frequency coefficients obtained
in the case of the structural system shown in Figure 1 with extensive numerical
results obtained by Carnicer et al. [6]. This investigation used the Galerkin
method with two different sets of co-ordinate functions (sinusoids and
polynomials), and the finite elements technique to obtain the fundamental
frequency coefficients of the structural element shown in Figure 1, in the case of
simply supported edges.

2.     

The general governing partial differential equation is

D014W
1x̄4 +2

14W
1x̄2 1ȳ2 +

14W
1ȳ4 1−0Nx

12W
1x̄2 +2Nxy

12W
1x̄ 1ȳ

+Ny
12W
1ȳ2 1− rhv2W=0.

(2)
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Figure 1. Rectangular plate subjected to a non-uniform stress field and executing transverse
vibrations.

In the case of the system shown in Figure 1 one has

Nx =N2 + (N1 −N2)0ȳb1, Nxy =0, Ny =0. (3)

Substituting equation (3) in equation (2) yields

D014W
1x̄4 +2

14W
1x̄2 1ȳ2 +

14W
1ȳ4 1−0N2 + (N1 −N2)

ȳ
b1 12W

1x̄2 − rhv2W=0. (4)

Introducing the dimensionless variables x̄= ax, ȳ= by, and defining

l=
a
b

, S1 =
N1a2

D
, S2 =

N2a2

D
,

g(y)=S2 + (S1 −S2)
y
b

, V2 =
rha4

D
v2,

Figure 2. Partition of the domain.
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T 1

Comparison of fundamental frequency coefficients in the case of a simply supported
rectangular plate (Figure 1)

Reference [6]
ZXXXXXXXXCXXXXXXXXV

Fourier Finite
l S1 S2 DQ Polynomials series elements

2/3 25·0 25·0 21·213 21·218 21·213 21·350
25·0 12·5 19·684 19·711 19·682 19·823
25·0 0 17·976 18·078 17·973 18·130
25·0 −25·0 13·765 14·263 13·751 14·002
0 −25·0 8·741 8·947 8·734 8·939

−12·5 −25·0 4·163 4·284 4·157 4·447
−25·0 −25·0 – – – –

1 25·0 25·0 25·227 25·234 25·227 25·431
25·0 12·5 23·969 23·980 23·968 24·175
25·0 0 22·630 22·658 22·628 22·844
25·0 −25·0 19·647 19·748 19·641 19·895
0 −25·0 16·291 16·328 16·288 16·525

−12·5 −25·0 14·296 14·314 14·295 14·536
−25·0 −25·0 11·955 11·967 11·954 12·214

2 25·0 25·0 51·751 51·814 51·788 53·126
25·0 12·5 51·192 51·215 51·189 52·537
25·0 0 50·585 50·609 50·582 51·942
25·0 −25·0 49·348 49·357 49·345 50·729
0 −25·0 48·084 48·100 48·081 49·489

−12·5 −25·0 47·439 47·464 47·436 48·857
−25·0 −25·0 46·785 46·809 46·781 48·216

equation (4) becomes

14W
1x4 +2l2 14W

1x2 1y2 + l4 14W
1y4 − g(y)

12W
1y2 −V2W=0. (5)

Following references [1–3] the plate domain is partitioned, as shown in Figure 2.
For all the situations considered, the number of nodal points in each direction was
N=9.

Using the notation introduced by Bert and co-workers [1–3] one obtains, in the
case of a simply supported rectangular plate,

s
N−1

k1 =2

Dik1Wk1j +2l2 s
N−1

k1 =2

s
N−1

k2 =2

Bik1Bjk2Wk1k2 + l4 s
N−1

k2 =2

Djk2Wik2

− gj s
N−1

k1 =2

Bik1Wk1j −V2Wij =0,

(i, j=3, . . . , N−2);
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s
N−1

k1 =2

B2k1Wk1j =0, ( j=3, . . . , N−1);

s
N−1

k2 =2

B2k2Wik2 =0, (i=2, . . . , N−2);

s
N−1

k1 =2

B(N−1)k1Wk1j =0, ( j=2, . . . , N−2),

s
N−1

k2 =2

B(N−1)k2Wik2 =0, (i=3, . . . , N−1).

3.  

Table 1 depicts values of the fundamental frequency coefficient V1 =zrh/D
v1a2 obtained by means of the DQ method which can be compared with the results
obtained by Carnicer et al. [6]. The comparison is performed for several
combinations of values of l, S1 and S2. One observes for all the situations an
excellent agreement between the results of the DQ method and those obtained by
means of the Galerkin approach coupled with a double Fourier series [6] which
are upper bounds with respect to the exact solution. The differences are, in general,
less than 0·1%.

Table 2 shows values of V1 for different combinations of boundary conditions,
and values of l, S1 and S2. The plate edges are defined in the table, starting from

T 2

Values of fundamental frequency coefficients of the structural system shown in Figure
1 for different combinations of boundary conditions

S1 =25·0 25·0 25·0 25·0 0 12·5 −25·0
l S2 =25·0 12·5 0 −25·0 −25·0 −25·0 −25·0

SS–C–SS–SS 2/3 22·122 20·818 19·399 16·088 11·383 7·956 –
1 28·388 27·407 26·386 24·197 21·201 19·521 17·647
2 71·094 70·715 70·333 69·563 68·557 68·048 67·535

C–C–SS–SS 2/3 26·031 24·789 23·446 20·362 16·315 13·734 10·415
1 31·755 31·779 29·761 27·579 24·625 22·794 21·167
2 72·958 72·555 72·149 71·329 70·256 69·711 69·160

SS–C–SS–C 2/3 23·430 22·067 20·596 17·222 13·321 10·809 7·450
1 32·949 31·998 31·015 28·941 26·743 25·568 24·384
2 96·574 96·254 95·933 95·287 94·638 94·312 93·984

C–C–C–SS 2/3 31·156 30·039 28·847 26·491 22·063 21·089 18·967
1 36·231 35·307 34·349 32·316 29·638 28·180 26·623
2 75·424 75·002 74·576 73·716 72·592 72·021 71·444

C–C–C–C 2/3 32·123 30·929 29·664 26·876 23·982 22·342 20·530
1 39·949 39·007 38·036 35·991 33·845 32·704 31·509
2 99·863 99·499 99·133 98·395 97·651 97·275 96·898
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x=0 and following the plate contour in a counter-clockwise fashion [7]. For these
combinations of boundary conditions no results are available in the open literature
but judging from the excellent accuracy achieved in the case of simply supported
edges, one hopefully expects at least good engineering accuracy in the case of the
frequency coefficients contained in Table 2.
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