Article No. jsvi.1998.1981, available online at http://www.idealibrary.com on IDE/

SV

USE OF THE DIFFERENTIAL QUADRATURE METHOD WHEN DEALING WITH TRANSVERSE VIBRATIONS OF A RECTANGULAR PLATE SUBJECTED TO A NON-UNIFORM STRESS DISTRIBUTION FIELD

R. H. Gutierrez and P. A. A. Laura
Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina

(Received 29 September 1998)

1. INTRODUCTION

Due to the efforts of Bert and associates, the method of differential quadrature is already well established in the technical and scientific literature [1-3]. Recently [4], the DQ technique was employed in the analysis of transverse vibrations of a thin rectangular plate subjected to a non-uniform stress field due to the presence of distributed loading of the type

$$
\begin{equation*}
f(y)=S\left(1-\frac{y^{2}}{b^{2}}\right) \tag{1}
\end{equation*}
$$

applied to plate edges parallel to the y-axis. The components of the plane stress tensor are approximately known [5], and the governing vibrations partial differential equation was solved by means of the DQ method for several combinations of plate boundary conditions.

The present study deals with a numerical investigation of the relative accuracy of the DQ method by comparing the frequency coefficients obtained in the case of the structural system shown in Figure 1 with extensive numerical results obtained by Carnicer et al. [6]. This investigation used the Galerkin method with two different sets of co-ordinate functions (sinusoids and polynomials), and the finite elements technique to obtain the fundamental frequency coefficients of the structural element shown in Figure 1, in the case of simply supported edges.

2. APPROXIMATE SOLUTION OF THE PROBLEM

The general governing partial differential equation is

$$
\begin{equation*}
D\left(\frac{\partial^{4} W}{\partial \bar{x}^{4}}+2 \frac{\partial^{4} W}{\partial \bar{x}^{2} \partial \bar{y}^{2}}+\frac{\partial^{4} W}{\partial \bar{y}^{4}}\right)-\left(N_{x} \frac{\partial^{2} W}{\partial \bar{x}^{2}}+2 N_{x y} \frac{\partial^{2} W}{\partial \bar{x} \partial \bar{y}}+N_{y} \frac{\partial^{2} W}{\partial \bar{y}^{-2}}\right)-\rho h \omega^{2} W=0 \tag{2}
\end{equation*}
$$

Figure 1. Rectangular plate subjected to a non-uniform stress field and executing transverse vibrations.

In the case of the system shown in Figure 1 one has

$$
\begin{equation*}
N_{x}=N_{2}+\left(N_{1}-N_{2}\right)\left(\frac{\bar{y}}{b}\right), \quad N_{x y}=0, \quad N_{y}=0 \tag{3}
\end{equation*}
$$

Substituting equation (3) in equation (2) yields

$$
\begin{equation*}
D\left(\frac{\partial^{4} W}{\partial \bar{x}^{4}}+2 \frac{\partial^{4} W}{\partial \bar{x}^{2} \partial \bar{y}^{2}}+\frac{\partial^{4} W}{\partial \bar{y}^{4}}\right)-\left(N_{2}+\left(N_{1}-N_{2}\right) \frac{\bar{y}}{b}\right) \frac{\partial^{2} W}{\partial \bar{x}^{2}}-\rho h \omega^{2} W=0 \tag{4}
\end{equation*}
$$

Introducing the dimensionless variables $\bar{x}=a x, \bar{y}=b y$, and defining

$$
\begin{aligned}
\lambda & =\frac{a}{b}, \quad S_{1}=\frac{N_{1} a^{2}}{D}, & S_{2} & =\frac{N_{2} a^{2}}{D} \\
g(y) & =S_{2}+\left(S_{1}-S_{2}\right) \frac{y}{b}, & \Omega^{2} & =\frac{\rho h a^{4}}{D} \omega^{2}
\end{aligned}
$$

Figure 2. Partition of the domain.

Table 1
Comparison of fundamental frequency coefficients in the case of a simply supported rectangular plate (Figure 1)

λ	S_{1}	S_{2}	DQ	Reference [6]		
				Polynomials	Fourier series	Finite elements
2/3	25.0	$25 \cdot 0$	21.213	21.218	21.213	$21 \cdot 350$
	25.0	$12 \cdot 5$	19.684	19.711	19.682	19.823
	$25 \cdot 0$	0	17.976	$18 \cdot 078$	17.973	$18 \cdot 130$
	$25 \cdot 0$	$-25 \cdot 0$	13.765	14.263	13.751	14.002
	0	-25.0	8.741	8.947	8.734	8.939
	-12.5	$-25 \cdot 0$	$4 \cdot 163$	$4 \cdot 284$	$4 \cdot 157$	$4 \cdot 447$
	-25.0	-25.0	-	-	-	-
1	25.0	$25 \cdot 0$	$25 \cdot 227$	$25 \cdot 234$	25.227	25.431
	25.0	$12 \cdot 5$	23.969	23.980	23.968	$24 \cdot 175$
	25.0	0	22.630	22.658	22.628	$22 \cdot 844$
	$25 \cdot 0$	-25.0	19.647	19.748	19.641	19.895
	0	-25.0	16.291	$16 \cdot 328$	$16 \cdot 288$	16.525
	-12.5	-25.0	14.296	14.314	14.295	14.536
	$-25 \cdot 0$	-25.0	11.955	11.967	11.954	$12 \cdot 214$
2	25.0	$25 \cdot 0$	51.751	$51 \cdot 814$	51.788	$53 \cdot 126$
	25.0	$12 \cdot 5$	$51 \cdot 192$	$51 \cdot 215$	$51 \cdot 189$	$52 \cdot 537$
	$25 \cdot 0$	0	$50 \cdot 585$	$50 \cdot 609$	$50 \cdot 582$	51.942
	$25 \cdot 0$	-25.0	$49 \cdot 348$	$49 \cdot 357$	$49 \cdot 345$	50.729
	0	$-25 \cdot 0$	48.084	$48 \cdot 100$	48.081	49.489
	-12.5	-25.0	47.439	$47 \cdot 464$	$47 \cdot 436$	$48 \cdot 857$
	$-25 \cdot 0$	-25.0	46.785	$46 \cdot 809$	$46 \cdot 781$	$48 \cdot 216$

equation (4) becomes

$$
\begin{equation*}
\frac{\partial^{4} W}{\partial x^{4}}+2 \lambda^{2} \frac{\partial^{4} W}{\partial x^{2} \partial y^{2}}+\lambda^{4} \frac{\partial^{4} W}{\partial y^{4}}-g(y) \frac{\partial^{2} W}{\partial y^{2}}-\Omega^{2} W=0 . \tag{5}
\end{equation*}
$$

Following references [1-3] the plate domain is partitioned, as shown in Figure 2. For all the situations considered, the number of nodal points in each direction was $N=9$.

Using the notation introduced by Bert and co-workers [1-3] one obtains, in the case of a simply supported rectangular plate,

$$
\begin{gathered}
\sum_{k_{1}=2}^{N-1} D_{i k_{1}} W_{k_{1} j}+2 \lambda^{2} \sum_{k_{1}=2}^{N-1} \sum_{k_{2}=2}^{N-1} B_{i k_{1}} B_{j k_{2}} W_{k_{1} k_{2}}+\lambda^{4} \sum_{k_{2}=2}^{N-1} D_{j k_{2}} W_{i k_{2}} \\
-g_{j} \sum_{k_{1}=2}^{N-1} B_{i k_{1}} W_{k_{1} j}-\Omega^{2} W_{i j}=0 \\
(i, j=3, \ldots, N-2) ;
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{k_{1}=2}^{N-1} B_{2 k_{1}} W_{k_{1} j}=0, \\
& \sum_{k_{2}=2}^{N-1} B_{2 k_{2}} W_{i k_{2}}=0,(j=3, \ldots, N-1) ; \\
& \sum_{k_{1}=2}^{N-1} B_{(N-1) k_{1}} W_{k_{1} j}=0, \\
&(j=2, \ldots, N-2), \\
& \sum_{k_{2}=2}^{N-1} B_{(N-1) k_{2}} W_{i k_{2}}=0, \\
&
\end{aligned}
$$

3. NUMERICAL RESULTS

Table 1 depicts values of the fundamental frequency coefficient $\Omega_{1}=\sqrt{\rho h / D}$ $\omega_{1} a^{2}$ obtained by means of the DQ method which can be compared with the results obtained by Carnicer et al. [6]. The comparison is performed for several combinations of values of λ, S_{1} and S_{2}. One observes for all the situations an excellent agreement between the results of the DQ method and those obtained by means of the Galerkin approach coupled with a double Fourier series [6] which are upper bounds with respect to the exact solution. The differences are, in general, less than $0 \cdot 1 \%$.

Table 2 shows values of Ω_{1} for different combinations of boundary conditions, and values of λ, S_{1} and S_{2}. The plate edges are defined in the table, starting from

Table 2
Values of fundamental frequency coefficients of the structural system shown in Figure 1 for different combinations of boundary conditions

	λ	$\begin{aligned} & S_{1}=25 \cdot 0 \\ & S_{2}=25 \cdot 0 \end{aligned}$	$\begin{aligned} & 25 \cdot 0 \\ & 12 \cdot 5 \end{aligned}$	$\begin{gathered} 25 \cdot 0 \\ 0 \end{gathered}$	$\begin{array}{r} 25 \cdot 0 \\ -25.0 \end{array}$	$\begin{gathered} 0 \\ -25 \cdot 0 \end{gathered}$	$\begin{array}{r} 12 \cdot 5 \\ -25.0 \end{array}$	$\begin{aligned} & -25 \cdot 0 \\ & -25 \cdot 0 \end{aligned}$
SS-C-SS-SS	2/3	$22 \cdot 122$	20.818	19.399	16.088	11.383	7.956	-
	1	28.388	$27 \cdot 407$	$26 \cdot 386$	$24 \cdot 197$	21-201	19.521	17.647
	2	71.094	70.715	70.333	69.563	$68 \cdot 557$	$68 \cdot 048$	67.535
C-C-SS-SS	2/3	26.031	24.789	$23 \cdot 446$	$20 \cdot 362$	$16 \cdot 315$	13.734	$10 \cdot 415$
	1	31.755	31.779	29.761	27.579	$24 \cdot 625$	22.794	$21 \cdot 167$
	2	$72 \cdot 958$	72.555	$72 \cdot 149$	71.329	$70 \cdot 256$	69.711	$69 \cdot 160$
SS-C-SS-C	2/3	23.430	22.067	$20 \cdot 596$	$17 \cdot 222$	13.321	$10 \cdot 809$	$7 \cdot 450$
	1	$32 \cdot 949$	31.998	31.015	28.941	26.743	$25 \cdot 568$	24.384
	2	$96 \cdot 574$	96.254	95.933	$95 \cdot 287$	94.638	94.312	93.984
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{SS}$	2/3	$31 \cdot 156$	$30 \cdot 039$	28.847	26.491	22.063	21-089	18.967
	1	$36 \cdot 231$	$35 \cdot 307$	$34 \cdot 349$	$32 \cdot 316$	29.638	$28 \cdot 180$	$26 \cdot 623$
	2	75.424	75.002	74.576	73.716	$72 \cdot 592$	$72 \cdot 021$	71.444
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$	2/3	$32 \cdot 123$	$30 \cdot 929$	$29 \cdot 664$	26.876	23.982	$22 \cdot 342$	$20 \cdot 530$
	1	39.949	39.007	38.036	35.991	$33 \cdot 845$	32.704	31.509
	2	99.863	99.499	99.133	98.395	97.651	97.275	96.898

$x=0$ and following the plate contour in a counter-clockwise fashion [7]. For these combinations of boundary conditions no results are available in the open literature but judging from the excellent accuracy achieved in the case of simply supported edges, one hopefully expects at least good engineering accuracy in the case of the frequency coefficients contained in Table 2.

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program and by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur (Project Director: Professor R. E. Rossi).

REFERENCES

1. C. W. Bert, S K. Jang and A. G. Striz 1988 American Institute of Astronautics Journal 26, 612-618. Two new approximate methods for analyzing free vibration of structural components.
2. C. W. Bert, S. K. Jang and A. G. Striz 1989 Computational Mechanics 5, 217-226. Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature.
3. A. K. Kukreti, J. Farsa and C. W. Bert 1992 Journal of Engineering Mechanics 118, 1221-1238. Fundamental frequency of tapered plates by differential quadrature.
4. P. A. A. Laura and R. Gutierrez 1998 Journal of Sound and Vibration 210, 559-565. Transverse vibrations of a thin rectangular plate subjected to a non-uniform distribution field.
5. S. Timoshenko and N. Goodier 1951 Theory of Elasticity. New York: McGraw-Hill.
6. R. Carnicer, A. Bergman and P. A. A. Laura 1999 Ocean Engineering (to be published). Plane state of stress and transverse oscillations of a simply supported rectangular plate.
7. A. W. Leissa 1969 NASA SP160. Vibration of plates.
