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1. INTRODUCTION

Due to the efforts of Bert and associates, the method of differential quadrature
is already well established in the technical and scientific literature [1-3]. Recently
[4], the DQ technique was employed in the analysis of transverse vibrations of a
thin rectangular plate subjected to a non-uniform stress field due to the presence
of distributed loading of the type

_ y:
J) = S<1 — b2> (1)

applied to plate edges parallel to the y-axis. The components of the plane stress
tensor are approximately known [5], and the governing vibrations partial
differential equation was solved by means of the DQ method for several
combinations of plate boundary conditions.

The present study deals with a numerical investigation of the relative
accuracy of the DQ method by comparing the frequency coefficients obtained
in the case of the structural system shown in Figure 1 with extensive numerical
results obtained by Carnicer et al. [6]. This investigation used the Galerkin
method with two different sets of co-ordinate functions (sinusoids and
polynomials), and the finite elements technique to obtain the fundamental
frequency coefficients of the structural element shown in Figure 1, in the case of
simply supported edges.

2. APPROXIMATE SOLUTION OF THE PROBLEM

The general governing partial differential equation is
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Figure 1. Rectangular plate subjected to a non-uniform stress field and executing transverse
vibrations.

In the case of the system shown in Figure 1 one has
N,=N,+ (N, — Nz)@), N,=0, N, =0. 3)

Substituting equation (3) in equation (2) yields

o'W o'W o'W J\OW e
D< 0%t + 2 0% 07 + 8)74> - <N2 + (N1 — N») b> o pho*W =0. (4)

Introducing the dimensionless variables ¥ = ax, y = by, and defining
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Figure 2. Partition of the domain.
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TABLE 1

Comparison of fundamental frequency coefficients in the case of a simply supported
rectangular plate (Figure 1)

Reference [6]

A

Fourier Finite
/ S S, DQ Polynomials series elements
2/3 25-0 25-0 21-213 21-218 21-213 21-350
250 12-5 19-634 19-711 19-682 19-823
25-0 0 17-976 18-078 17-973 18-130
25-0 —250 13-765 14-263 13-751 14-002
0 —250 8741 8-947 8734 8:939
—12:5 —250 4-163 4-284 4-157 4-447
—250 —250 - - - -
1 250 25-0 25227 25-234 25227 25-431
250 12-5 23-969 23-980 23-968 24-175
25-0 0 22:630 22-658 22-628 22-844
250 —25:0 19-647 19-748 19-641 19-895
0 —250 16-291 16-328 16-288 16-525
—12:5 —250 14-296 14-314 14-295 14:536
—250 —250 11-955 11-967 11954 12:214
2 25-0 25-0 51751 51-814 51-788 53-126
25-0 12-5 51-192 51-215 51-189 52-537
25-0 0 50-585 50-609 50-582 51-942
25-0 —250 49-348 49-357 49-345 50729
0 —250 48-084 48-100 48-081 49-489
—12:5 —250 47-439 47-464 47-436 48-857
—250 —250 46-785 46-309 46-781 48:216
equation (4) becomes
4 3774 3774
o, o 2+z4a (y) w0, (5)

Following references [1-3] the plate domain is partitioned, as shown in Figure 2.
For all the situations considered, the number of nodal points in each direction was
N=09.

Using the notation introduced by Bert and co-workers [1-3] one obtains, in the
case of a simply supported rectangular plate,

N—-—1 N-1
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N-1
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3. NUMERICAL RESULTS

Table 1 depicts values of the fundamental frequency coefficient Q, = /ph/D
w,a’ obtained by means of the DQ method which can be compared with the results
obtained by Carnicer er al. [6]. The comparison is performed for several
combinations of values of A, S; and S,. One observes for all the situations an
excellent agreement between the results of the DQ method and those obtained by
means of the Galerkin approach coupled with a double Fourier series [6] which
are upper bounds with respect to the exact solution. The differences are, in general,
less than 0-1%.

Table 2 shows values of Q, for different combinations of boundary conditions,
and values of 4, S; and S,. The plate edges are defined in the table, starting from

TABLE 2

Values of fundamental frequency coefficients of the structural system shown in Figure
1 for different combinations of boundary conditions

S =250 250 250 25-0 0 12-:5 =250
A 8§ =250 125 0 —250 =250 —250 —-250

SS-C-SS-SS 2/3  22-122 20-818 19399 16:088 11383  7-956 -
1 28-388  27-407 26-386 24-197 21-201 19-521 17-647
2 71-094  70-715 70-333  69-563 68-557 68-:048 67-535
C-C-SS-SS 2/3 26031 24789 23-446 20362 16315 13-734 10415
1 31-755 31779 29-761 27-579 24-625 22794 21-167
2 72-958  72-555 72:149 71329 70-256 69-711 69-160
SS-C-SS-C 2/3 23430 22067 20-596 17-222 13-321 10-809  7-450
1 32:949 31998 31-015 28941 26-743 25-568 24-384
2 96-574  96:254 95933 95287 94-638 94-312 93-984
C-C-C-SS 2/3 31156 30-039 28-847 26491 22-063 21-089 18-:967
1 36-231 35307 34-349 32:316 29-638 28-180 26:623
2 75424 775002 74-576 73716 72-592 72-021 71-444
C-CC-C 2/3 32123 30929 29-664 26876 23-982 22-342 20-530
1 39949 39-.007 38:036 35991 33-845 32:704 31-509
2 99-863  99-499 99-133 98395 97-651 97275 96-898
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x = 0 and following the plate contour in a counter-clockwise fashion [7]. For these
combinations of boundary conditions no results are available in the open literature
but judging from the excellent accuracy achieved in the case of simply supported
edges, one hopefully expects at least good engineering accuracy in the case of the
frequency coeflicients contained in Table 2.
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